New draft: Complexity and Information: Measuring Emergence, Self-organization, and Homeostasis at Multiple Scales
Concepts used in the scientific study of complex systems have become so widespread that their use and abuse has led to ambiguity and confusion in their meaning. In this paper we use information theory to provide abstract and concise measures of complexity, emergence, self-organization, and homeostasis. The purpose is to clarify the meaning of these concepts with the aid of the proposed formal measures. In a simplified version of the measures (focussing on the information produced by a system), emergence becomes the opposite of self-organization, while complexity represents their balance. We use computational experiments on random Boolean networks and elementary cellular automata to illustrate our measures at multiple scales.
Gershenson, C. & N. Fernández (2012). Complexity and Information: Measuring Emergence, Self-organization, and Homeostasis at Multiple Scales. C3 Report 2012.03. http://arxiv.org/abs/1205.2026
Gershenson, C. & N. Fernández (2012). Complexity and Information: Measuring Emergence, Self-organization, and Homeostasis at Multiple Scales. C3 Report 2012.03. http://arxiv.org/abs/1205.2026
Comments